Quantum Bruhat Graph and Schubert Polynomials

نویسنده

  • ALEXANDER POSTNIKOV
چکیده

The quantum Bruhat graph, which is an extension of the graph formed by covering relations in the Bruhat order, is naturally related to the quantum cohomology ring of G/B. We enhance a result of Fulton and Woodward by showing that the minimal monomial in the quantum parameters that occurs in the quantum product of two Schubert classes has a simple interpretation in terms of directed paths in this graph. We define path Schubert polynomials, which are quantum cohomology analogs of skew Schubert polynomials recently introduced by Lenart and Sottile. They are given by sums over paths in the quantum Bruhat graph of type A. The 3-point Gromov-Witten invariants for the flag manifold are expressed in terms of these polynomials. This construction gives a combinatorial description for the set of all monomials in the quantum parameters that occur in the quantum product of two Schubert classes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

un 2 00 2 QUANTUM BRUHAT GRAPH AND SCHUBERT POLYNOMIALS

The quantum Bruhat graph, which is an extension of the graph formed by covering relations in the Bruhat order, is naturally related to the quantum cohomology ring of G/B. We enhance a result of Fulton and Wood-ward by showing that the minimal monomial in the quantum parameters that occurs in the quantum product of two Schubert classes has a simple interpretation in terms of directed paths in th...

متن کامل

Quantum Cohomology of G/p and Homology of Affine Grassmannian

Let G be a simple and simply-connected complex algebraic group, P ⊂ G a parabolic subgroup. We prove an unpublished result of D. Peterson which states that the quantum cohomology QH∗(G/P ) of a flag variety is, up to localization, a quotient of the homology H∗(GrG) of the affine Grassmannian GrG of G. As a consequence, all three-point genus zero Gromov-Witten invariants of G/P are identified wi...

متن کامل

v 1 1 7 O ct 1 99 6 Quantum Schubert polynomials and the Vafa – Intriligator formula

We introduce a quantization map and study the quantization of Schubert and Grothendieck polynomials, monomials, elementary and complete polynomials. Our construction is based on the quantum Cauchy identity. As a corollary, we prove the Lascoux–Schützenberger type formula for quantum Schubert polynomials of the flag manifold. Our formula gives a simple method for computation of quantum Schubert ...

متن کامل

Skew Schubert Polynomials

We define skew Schubert polynomials to be normal form (polynomial) representatives of certain classes in the cohomology of a flag manifold. We show that this definition extends a recent construction of Schubert polynomials due to Bergeron and Sottile in terms of certain increasing labeled chains in Bruhat order of the symmetric group. These skew Schubert polynomials expand in the basis of Schub...

متن کامل

Quantum double Schubert polynomials, quantum Schubert polynomials and Vafa-Intriligator formula

We study the algebraic aspects of equivariant quantum cohomology algebra of the flag manifold. We introduce and study the quantum double Schubert polynomials S̃w(x, y), which are the Lascoux– Schützenberger type representatives of the equivariant quantum cohomology classes. Our approach is based on the quantum Cauchy identity. We define also quantum Schubert polynomials S̃w(x) as the Gram–Schmidt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002